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Delay time window and plateau onset of the correlation dimension for small data sets
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The method of delays is widely used for reconstructing chaotic attractors from experimental observations.
Many studies have used a fixed delay timetd as the embedding dimensionm is increased, but this is not
necessarily the best choice for obtaining good convergence of the correlation dimension. Recently, some
researchers have suggested that it is better to fix the delay time windowtw instead. Unfortunately,tw cannot
be estimated using either the autocorrelation function or the mutual information, and no standard procedure for
estimatingtw has yet emerged. However, the recently introducedC2C method can be used to estimate either
td or tw . Using this method, we show that, for small data sets, fixingtw , rather thantd , does indeed lead to
a more rapid convergence of the correlation dimension as the embedding dimensionm is increased.
@S1063-651X~98!05111-3#
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I. INTRODUCTION

Much progress has been made in understanding cha
physical processes in science and engineering. To qua
the chaotic behavior of a time series, one often calculates
correlation dimension. The first step in this calculation is
reconstruction of the chaotic attractor from the experimen
observations. The standard technique for attractor rec
struction is the method of delays developed by Packardet al.
@1# and Takens@2#. This method embeds the finite time seri
$xi%, i 51,2, . . . ,N, into anm-dimensional space by definin
the vectors

xW i5~xi ,xi 1t ,xi 12t ,...,xi 1~m21!t!, xW iPRm, ~1!

where t is the index lag, and the number of vectors isM
5N2(m21)t. If the sampling time ists , then the delay
time is td5tts . One advantage of this method is that
yields the same noise level for each component of the s
vector.

Since the components of the reconstructed vectors nee
be independent, the quality of the reconstructed attractor
pends on the choice of the delay timetd . If td is too small,
the reconstructed attractor is compressed along the ide
line, and this is called redundance. Iftd is too large, the
attractor dynamics may become causally disconnected,
this is called irrelevance@3#. Most researchers have used
fixed value oftd , independent of the embedding dimensi
m, and this is usually selected using either the autocorr
tion function or the mutual information. The latter approa
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is more reliable, but it also requires larger data sets
greater computation time than the former method. We
cently introduced a method for estimatingtd , called the
(C2C) method, which yields the same results as the mut
information, but which can be used with much smaller d
sets, and which is more efficient computationally@4#.

On the other hand, several researchers@5–9# have sug-
gested that, rather than using a fixed delay timetd for vari-
ous embedding dimensionsm, it may be more appropriate to
fix the delay time windowtw5(m21)t, which is the entire
time spanned by the components of each embedded vectxW i
~in practice,tw cannot be completely fixed, since the del
time t must be rounded off to the nearest integer multiple
the sampling timets!. Unfortunately, the estimation oftw is
not fully developed, and Martinerieet al. @9# have shown
that neither the autocorrelation function nor the mutual inf
mation can givetw . However, theC2C method can be
used to findtw , as well astd @4#. Basically,tw is the opti-
mal time for independence, whiletd is the first locally opti-
mal time.

Using a fixed delay timetd does not necessarily lead t
good convergence of the correlation dimension as the
bedding dimensionm increases@10#, and it may result in the
undesirable blurring of the information from two~or more!
states as the number of delay coordinates increases@7#. How-
ever, using a fixed delay time windowtw can lead to near-
minimum redundance, while keeping the irrelevance at
acceptable level@7#. Using theC2C method to estimate
both td andtw , this study shows that usingtw , rather than
td , does indeed lead to a more rapid convergence of
correlation dimension for small data sets. Since the esti
tion of tw using theC2C method is efficient computation
ally, is robust to noise, and does not require large data
@4#, then the use oftw , rather thantd , should become the
standard procedure.
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FIG. 1. S(m,r ,t) for the variablex from the Lorenz system of Eq.~15! with a510.0,b528.0,c58/3, andts50.01 using 3000 data
points. The circles indicate the vicinity oftd , where the first local minimum occurs in the variation ofS(m,r ,t) with r. Note thatR
5r /s.
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II. MEASURE OF NONLINEAR DEPENDENCE

A. Correlation integral and BDS statistic

The correlation dimension introduced by Grassberger
Procaccia@11# is widely used in many fields for the chara
terization of strange attractors. The correlation integral
the embedded time series is the following function:

C~m,N,r ,t !5
2

M ~M21! (
1< i , j <M

Q~r 2ixW i2xW j i !, r .0,

~2!

where

Q~a!5 H0,
1,

if a,0
if a>0,

N is the size of the data set,t is the index lag,M5N2(m
21)t is the number of embedded points inm-dimensional
space, andi¯i denotes the sup-norm.C(m,N,r ,t) measures
the fraction of the pairs of pointsxW i , i 51,2, . . . ,M , whose
sup-norm separation is no greater thanr. If the limit of
C(m,N,r ,t) asN→` exists for eachr, we write the fraction
of all state vector points that are withinr of each other as
C(m,r ,t)5 limN→` C(m,N,r ,t), and the correlation dimen
sion is defined as D2(m,t)5 limr→0@ log10C(m,r ,t)/
log10r #. In practice,N remains finite, and, thus,r cannot go
d

r

to zero; instead, we look for a linear region of slopeD2(m,t)
in the plot of log10C(m,N,r ,t) versus log10r .

Brock et al. @12,13# studied the BDS statistic, which i
based on the correlation integral, to test the null hypothe
that the data are independently and identically distribu
~iid!. This test has been particularly useful for chaotic s
tems and nonlinear stochastic systems.

Under theiid hypothesis, the Brock-Dechert-Scheinkm
~BDS! statistic form.1 is defined as

SBDS~m,M ,r !5
AM

s~m,M ,r !
@C~m,M ,r !2Cm~1,M ,r !#,

~3!

and this converges to a standard normal distribution asM
→`. Note that the asymptotic variances2(m,M ,r ) can be
estimated as

s2~m,M ,r !54H m~m21!Ĉ2~m21!~K̂2Ĉ2!1K̂m2Ĉ2m

12 (
i 51

m21

@Ĉ2i~K̂m2 i2Ĉ2~m2 i !!

2mĈ2~m2 i !~K̂2Ĉ2!#J , ~4!
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FIG. 2. DS(m,t), DS̄(t), S̄(t), andScor(t) for the variablex from the Lorenz system of Fig. 1. The solid line locatestd518ts , and the
minimum of Scor(t) yields tw5123ts .
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Ĉ~m,M ,r !5
2

M ~M21! (
1< i , j <M

Q~r 2ixW i2xW j i !, ~5!

K̂~m,M ,r !5
6

M ~M21!~M22! (
1< i , j ,k<M

3Q~r 2ixW i2xW j i !Q~r 2ixW j2xW ki !. ~6!

The BDS statistic originates from the statistical propert
of the correlation integral, and it measures the statistical
nificance of calculations of the correlation dimension. Ev
though the BDS statistic cannot be used to distinguish
tween a nonlinear deterministic system and a nonlinear
chastic system, it is a powerful tool for distinguishing ra
dom time series from the time series generated by chaot
nonlinear stochastic processes. Its statistical properties, a
with proofs, can be found in the literature@12,13#.

B. C2C method

The present study is concerned with the properties of
quantityS(m,N,r ,t)5C(m,N,r ,t)2Cm(1,N,r ,t). We refer
to a comment by Brocket al. @12#: ‘‘If a stochastic process
$xi% is iid, it will be shown thatC(m,r )5Cm(1,r ) for all m
and r. That is to say, the correlation integral behaves mu
like the characteristic function of a serial string in that t
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correlation integral of a serial string of independent rand
variables is the product of the correlation integrals of co
ponent substrings.’’ This led us to interpret the statis
S(m,N,r ,t) as a nonlinear analog of the serial correlation
a nonlinear time series. More precisely, it can be regarde
a dimensionless measure of nonlinear dependence, and i
be used to determine an appropriate index lagt. For fixedm,
N, andr, a plot ofS(m,N,r ,t) versust is a nonlinear analog
of the plot of the autocorrelation function versust.

In order to study the nonlinear dependence and elimin
spurious temporal correlations, we must subdivide the ti
series$xi%, i 51,2, . . . ,N, into t disjoint time series of size
N/t. S(m,N,r ,t) is then computed from thet disjoint time
series as follows:

TABLE I. Summary of results for three dynamical systems.

System Parameters Variable ts

C2C Method

td tw

Lorenz a510.0,
b528.0,
c58/3

x 0.01 0.18 1.23

Rabinovich-
Fabrikant

g50.87,a51.1 x 0.01 0.52 1.28

Three-torus x 1.00 55 101
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For t51, we have the single time series$x1 ,x2 ,...,xN%,
and

S~m,N,r ,1!5C~m,N,r ,1!2Cm~1,N,r ,1!. ~7!

For t52, we have the two disjoint time serie
$x1 ,x3 ,...,xN21% and $x2 ,x4 ,...,xN%, each of lengthN/2,
and we average the values ofS(m,N/2,r ,1) for these two
series:

S~m,N,r ,2!5 1
2 $@C1~m,N/2,r ,2!2C1

m~1,N/2,r ,2!#

1@C2~m,N/2,r ,2!2C2
m~1,N/2,r ,2!#%. ~8!

For generalt, this becomes

S~m,N,r ,t !5
1

t (
s51

t

@Cs~m,N/t,r ,t !2Cs
m~1,N/t,r ,t !#.

~9!

Finally, asN→`, we can write

FIG. 3. Correlation integrals for 20 000 data points genera
from the Lorenz system of Eq.~15! using ~a! td518ts and ~b! tw

5123ts .
S~m,r ,t !5
1

t (
s51

t

@Cs~m,r ,t !2Cs
m~1,r ,t !#, m52,3, . . . .

~10!

For fixed m and t, S(m,r ,t) will be identically equal to
zero for allr if the data isiid andN→`. However, real data
sets are finite, and the data may be serially correlated, s
general, we will haveS(m,r ,t)Þ0. Thus, the locally optimal
times for independence of the data may be either the z
crossings ofS(m,r ,t) or the times at whichS(m,r ,t) shows
the least variation withr, since this indicates a nearly un
form distribution of points~since a uniform distribution is
length-scale invariant!. Hence, we select several represen
tive valuesr j , and we define the quantity

DS~m,t !5max$S~m,r j ,t !%2min$S~m,r j ,t !%, ~11!

which is a measure of the variation ofS(m,r ,t) with r. The
locally optimal times t are then the zero crossings o
S(m,r ,t) and the minima ofDS(m,t). In the first case, the
zero crossings should be nearly the same for allm andr, and,
in the second case, the minima should be nearly the sam
all m ~otherwise, the time is not locally optimal!. The delay
time td will correspond to the first of these locally optima
times.

In determining the nonlinear dependence of a finite ti
series by using the statisticS(m,N,r ,t), one must have cri-
teria for selecting the values ofm and r. In addition, one
must know the role of the sample sizeN. For a fixed value of
N, asm becomes large, the data become very sparse, so
C(m,N,r ,t) becomes vanishingly small. Also, ifr exceeds
the size of the attractor, thenC(m,N,r ,t) saturates, since al
pairs of points are within the distancer. Thus, neitherm nor
r should be too large.

Brock et al. @12# investigated the BDS statistic for tim
series generated from six distributions in order to determ
what values ofm and r are appropriate. Time series wit
three sample sizes,N5100, 500, and 1000, were generat
by Monte Carlo simulation from six distributions: a standa

d

FIG. 4. Plateau onset of the correlation dimension for 20 0
data points generated from the Lorenz system usingtd518ts

~circles! andtw5123ts ~crosses!. A horizontal line is drawn at the
true correlation dimension ofD252.05.
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normal distribution, a student-t distribution with 3 degrees
of freedom, a double exponential distribution, a chi-squ
distribution with 4 degrees of freedom, a uniform distrib
tion, and a bimodal mixture of normal distributions. The
studies led to the conclusion thatm should be between 2
and 5, andr should be betweens/2 and 2s. In addition, the
assumed distributions were well approximated by finite ti
series whenN>500. Note that examining the statist
S(m,r ,t) only for 2<m<5 does not restrict its use t
systems for which the correlation dimension lies in th
range.

Thus, we select four values ofr in the ranges/2<r
<2s, r 15(0.5)s, r 25(1.0)s, r 35(1.5)s, and r 4
5(2.0)s, as representative values. Rather than examin
S(m,r ,t) andDS(m,t) for all of these values ofm andr, we
instead examine the averages

S̄~ t !5
1

16 (
m52

5

(
j 51

4

S~m,r j ,t !, ~12!

DS̄~ t !5
1

4 (
m52

5

DS~m,t !. ~13!

FIG. 5. Correlation integrals for 3000 data points genera
from the Lorenz system using~a! td518ts and ~b! tw5123ts .
e

e

g

We look for the first zero crossing ofS̄(t) or the first local
minimum of DS̄(t) for finding the first locally optimal time
for independence of the data, and this gives the delay t
td5tts . The optimal time is the index lagt for which S̄(t)
and DS̄(t) are both closest to zero. If we assign equal i
portance to these two quantities, then we may simply lo
for the minimum of the quantity

Scor~ t !5DS̄~ t !1uS̄~ t !u, ~14!

and this optimal time gives the delay time windowtw

5tts .
d

FIG. 6. Plateau onset of the correlation dimension for 3000 d
points generated from the Lorenz system usingtd518ts ~circles!
and tw5123ts ~crosses!. A horizontal line is drawn at the true
correlation dimension ofD252.05.

FIG. 7. Plateau onset of the correlation dimension for 3000 d
points generated from the Rabinovich-Fabrikant system of Eq.~16!
for g50.87 anda51.1 usingtd552ts ~circles! and tw5128ts

~crosses!. A horizontal line is drawn at the true correlation dime
sion of D252.19.
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III. PLATEAU ONSET OF THE CORRELATION
DIMENSION

In this study, we consider the following three systems:
Lorenz system@11#

ẋ52a~x2y!,

ẏ52xz1cx2y, ~15!

ż5xy2bz,

the Rabinovich-Fabrikant system@14#

ẋ5y~z211x2!1gx,

ẏ5x~3z112x2!1gy, ~16!

ż522z~a1xy!,

and the three-torus@9#

xi5sinF 3i

500G1sinF3& i

250 G1sinF9) i

500 G . ~17!

For the Lorenz system, we solve the system of equati
for a510.0,b528.0, andc58/3 to generate a time series
the variablex with ts50.01. We then computeS(m,r ,t)
from Eq. ~10!, and the results are shown in Fig. 1. Th
circles in Fig. 1 indicate the index lagt where the variation
of S(m,r ,t) with r is at its first local minimum, and Fig. 2~a!
shows this first local minimum ofDS(m,t) more clearly. We
choose the delay time at this point, which givestd518ts
50.18 @see Fig. 2~b!#. This agrees with the delay tim
td50.17 found by Martinerieet al. @9# using the first local
minimum of the mutual information. Also, from the min
mum of Scor(t) in Fig. 2~c!, we choose the delay time win
dow tw5123ts51.23. Similar analyses are performed f
the other two systems, and the delay times and the delay

FIG. 8. Plateau onset of the correlation dimension for 3000 d
points generated from the three-torus of Eq.~17! using td555
~circles! and tw5101 ~crosses!. A horizontal line is drawn at the
true correlation dimension ofD253.0.
e

s

e

windows obtained by theC2C method for the three system
are summarized in Table I. These results are very robus
the addition of noise, as shown in Ref.@4#.

The correlation integrals for the Lorenz system, using
fixed value oftd and the fixed value oftw are computed for
N520 000 data points, and the results are shown in Fig
From the linear regions of these correlation integrals~which
have been darkened in Fig. 3!, the correlation dimensions ar
calculated, and these results are shown in Fig. 4, toge
with the valueD252.05 obtained by Grassberger and Pr
caccia@11#. The two sets of results are virtually identica
and the plateau onset occurs at aboutm516.

Next, we perform a similar analysis for a small data s
with only N53000 data points. The correlation integra
based ontd andtw are drawn in Fig. 5, and the correlatio
dimensions are shown in Fig. 6. For the fixed value oftw ,
the plateau onset occurs at aboutm524, but, for the fixed
value oftd , the plateau onset does not occur until aboutm
528. This difference in embedding dimensions represen
substantial difference in the amount of computer time
quired to obtain the correlation dimension.

We solve the Rabinovich-Fabrikant system of Eq.~16! for
g50.87 anda51.1, and we generate a time series of 30
data points for the variablex with ts50.01. The correlation
dimensions based on the values oftd andtw given in Table
I are shown in Fig. 7, along with the valueD252.19 found
in Ref. @11#. The plateau onset for the correlation dimensi
obtained usingtw occurs at aboutm510, but the plateau
onset obtained usingtd does not occur until aboutm516.

Figure 8 shows similar results for the three-torus of E
~17! using the values oftd andtw given in Table I. Using the
fixed value oftw causes the correlation dimension to satur
at the correct value ofD253 at aboutm524, but, when the
fixed value oftd is used, saturation has still not occurred f
m530.

IV. CLOSING REMARKS

In this study, we have shown that, for small data se
using a fixed delay time windowtw , rather than a fixed
delay time td , leads to a more rapid convergence of t
correlation dimension as the embedding dimensionm is in-
creased. Although no standard technique for estimatingtw
has yet emerged, we have shown that theC2C method is
well suited to this task. Furthermore, this method is efficie
computationally, it is robust to noise, and it may be used
small data sets. As a result, the use of a fixed value oftw ,
rather than a fixed value oftd , should become standar
practice. This is particularly important in fields such as h
drology and atmospheric science, where small noisy data
are common.
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