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Delay time window and plateau onset of the correlation dimension for small data sets
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The method of delays is widely used for reconstructing chaotic attractors from experimental observations.
Many studies have used a fixed delay timgas the embedding dimension is increased, but this is not
necessarily the best choice for obtaining good convergence of the correlation dimension. Recently, some
researchers have suggested that it is better to fix the delay time wingdawstead. Unfortunatelyr,, cannot
be estimated using either the autocorrelation function or the mutual information, and no standard procedure for
estimatingr,, has yet emerged. However, the recently introdu€edC method can be used to estimate either
T4 OF 7, . Using this method, we show that, for small data sets, fixipg rather thanry, does indeed lead to
a more rapid convergence of the correlation dimension as the embedding dimerisiamcreased.
[S1063-651%98)05111-3

PACS numbeps): 05.45+b, 47.52+]

I. INTRODUCTION is more reliable, but it also requires larger data sets and
greater computation time than the former method. We re-
Much progress has been made in understanding chaotiently introduced a method for estimating, called the
physical processes in science and engineering. To quantifyC—C) method, which yields the same results as the mutual
the chaotic behavior of a time series, one often calculates th&formation, but which can be used with much smaller data
correlation dimension. The first step in this calculation is thes€ts, and which is more efficient computationg#y.
reconstruction of the chaotic attractor from the experimental ©On the other hand, several researchi&rs9] have sug-
observations. The standard technique for attractor recorf€Sted that, rather than using a fixed delay tirgdor vari-
struction is the method of delays developed by Packaal. ~ ©0US eémbedding dimensioms, it may be more appropriate to
[1] and Taken$2]. This method embeds the finite time series 1 the delay time windowr, =(m—1)7, which is the entire
{xi}, i=1,2,... N, into anmdimensional space by defining time spa_nned by the components of ef%Ch embedded vgctor
the vectors (]n practice,r,, cannot be completely flxeq, since the 'delay
time 7 must be rounded off to the nearest integer multiple of
the sampling timerg). Unfortunately, the estimation af, is
not fully developed, and Martineriet al. [9] have shown
) ) that neither the autocorrelation function nor the mutual infor-
wheret is the index lag, and the number of vectorsMs  mation can giver,,. However, theC—C method can be
=N—(m-1)t. If the sampling time is7s, then the delay ysed to findr,, as well asr4 [4]. Basically, r,, is the opti-
time is 7y=t7s. One advantage of this method is that it mal time for independence, white, is the first locally opti-
yields the same noise level for each component of the statgal time.
vector. Using a fixed delay timey does not necessarily lead to
Since the components of the reconstructed vectors need tod convergence of the correlation dimension as the em-
be independent, the quality of the reconstructed attractor désedding dimensiom increase$10], and it may result in the
pends on the choice of the delay timg. If 74 is too small, undesirable blurring of the information from twor more
the reconstructed attractor is compressed along the identitates as the number of delay coordinates incrda$eldow-
line, and this is called redundance. 4 is too large, the ever, using a fixed delay time window, can lead to near-
attractor dynamics may become causally disconnected, andinimum redundance, while keeping the irrelevance at an
this is called irrelevancg3]. Most researchers have used aacceptable leve[7]. Using theC—C method to estimate
fixed value ofry, independent of the embedding dimensionboth 4 and 7,,, this study shows that using,, rather than
m, and this is usually selected using either the autocorrelar,, does indeed lead to a more rapid convergence of the
tion function or the mutual information. The latter approachcorrelation dimension for small data sets. Since the estima-
tion of 7, using theC—C method is efficient computation-
ally, is robust to noise, and does not require large data sets
*Present address: Department of Construction Engineering, Sum], then the use of,,, rather thanry, should become the
Moon University, Asan-Si, Korea. standard procedure.

Xi = (Xi 1 X4t Xi 42t 1+ Xt (m=1)t) Xje R™, 1
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FIG. 1. S(m,r,t) for the variablex from the Lorenz system of Eq15) with a=10.0,b=28.0,c=8/3, and7,=0.01 using 3000 data
points. The circles indicate the vicinity afy;, where the first local minimum occurs in the variation $(fm,r,t) with r. Note thatR
=r/o.

Il. MEASURE OF NONLINEAR DEPENDENCE to zero; instead, we look for a linear region of sldpg(m,t)

in the plot of logC(m,N,r,t) versus loggr .

) ) o Brock et al. [12,13 studied the BDS statistic, which is
The correlation dimension introduced by Grassberger anflaseqd on the correlation integral, to test the null hypothesis

Procaccig 11] is widely used in many fields for the charac- 4t the data are independently and identically distributed
terization of strange attractors. The correlation integral fofjiy) Thjs test has been particularly useful for chaotic sys-
the embedded time series is the following function: tems and nonlinear stochastic systems

Under theiid hypothesis, the Brock-Dechert-Scheinkman

A. Correlation integral and BDS statistic

CMN,r)=—"—— >  O(r—|%x—%l), r>0, (BDS) statistic form>1 is defined as
M(M—1) 1<iS<m
2
™M .
where SBDs(m,'\/Lr):m[C(m,M,r)—C (1M,r)],
3
0, if a<O0
0@)=11 if a=o,

and this converges to a standard normal distributiorMas
—, Note that the asymptotic variane€(m,M,r) can be

N is the size of the data sdtjs the index lagM =N—(m .
estimated as

—1)t is the number of embedded points imdimensional
space, and - -| denotes the sup-norr@.(m,N,r,t) measures
the fraction of the pairs of point§, i=1,2,... M, whose Ao A A n A
sup-norm separatiI(D)n is n(? gr:?iter thanlf the limit of o?(mM,r) =4 m(m—1)C*™ Y(K—-C?)+Km-C?"
C(m,N,r,t) asN—oo exists for eachr, we write the fraction m—1

of all state vector points that are withinof each other as +23> [éZi(km—i_éZ(m—i))
C(m,r,t)=limy_. C(m,N,r,t), and the correlation dimen- i=1

sion is defined as D,(m,t)=Ilim,_[log;,C(m,r,t)/
log,qf ]. In practice,N remains finite, and, thus,cannot go

—mC™(K-C?)]t, )
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FIG. 2. AS(m,t), Ag(t), g(t), andS,,(t) for the variablex from the Lorenz system of Fig. 1. The solid line locatgs- 187, and the
minimum of Scy(t) yields 7,=123r.

- correlation integral of a serial string of independent random
C(mM,r)= M(M=1) > O(r—|%—%), 5 variables is the product of the correlation integrals of com-
( 1si<i=M ponent substrings.” This led us to interpret the statistic
S(m,N,r,t) as a nonlinear analog of the serial correlation of
6 2 a nonlinear time series. More precisely, it can be regarded as
M(M—=1)(M—=2) 1<iSZk=m a dimensionless measure of nonlinear dependence, and it can
be used to determine an appropriate indextldepr fixedm,
XO(r=[X%=xHer—[X—%X). (6 N, andr, aplot ofS(m,N,r,t) versust is a nonlinear analog
of the plot of the autocorrelation function versus
The BDS statistic originates from the statistical properties |n order to study the nonlinear dependence and eliminate
of the correlation integral, and it measures the statistical Sigspurious temporal correlations, we must subdivide the time
though the BDS statistic cannot be used to distinguish beny/t, S(m,N,r,t) is then computed from thedisjoint time
tween a nonlinear deterministic system and a nonlinear stGseries as follows:
chastic system, it is a powerful tool for distinguishing ran-
dom time series from the time series generated by chaotic or TABLE I. Summary of results for three dynamical systems.
nonlinear stochastic processes. Its statistical properties, along

R(m,M,r)=

with proofs, can be found in the literatuf&2,13. C-C Method
System Parameters Variable 7 T4 Tw
B. C—C method
) ] ) Lorenz a=10.0, X 0.01 0.18 1.23
The present study is concerned with the properties of the b=28.0,
guantity S(m,N,r,t)=C(m,N,r,t)—C™(1,N,r,t). We refer c=8/3

to a comment by Broclet al. [12]: “If a stochastic process Rapinovich- y=0.87,a=1.1 X 001 052 1.28
{x;} isiid, it will be shown thatC(m,r)=C™(1yr) for all m  Fabrikant

andr. That is to say, the correlation integral behaves muchrpree-torus X 1.00 55 101
like the characteristic function of a serial string in that the
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FIG. 4. Plateau onset of the correlation dimension for 20 000
data points generated from the Lorenz system usigg 187
(circles and 7,,= 123r, (crosses A horizontal line is drawn at the
true correlation dimension d,=2.05.

t
Z Comr,t)=C™(1r,t)], m=23,....

t &
(10)

| -

S(m,r,t)=

For fixedm andt, S(m,r,t) will be identically equal to
zero for allr if the data isid andN— . However, real data
sets are finite, and the data may be serially correlated, so, in
general, we will havés(m,r,t) # 0. Thus, the locally optimal
times for independence of the data may be either the zero
crossings ofS(m,r,t) or the times at whicls(m,r,t) shows
the least variation withr, since this indicates a nearly uni-
form distribution of points(since a uniform distribution is
length-scale invariaint Hence, we select several representa-
tive valuesr;, and we define the quantity

FIG. 3. Correlation integrals for 20 000 data points generated

from the Lorenz system of Eq15) using(a) 74= 187 and(b) 7,
=123r.

For t=1, we have the single time seri¢s;,X,,... Xy},
and

S(m,N,r,1)=C(m,N,r,1)—C™(1,N,r,1). (7)

For t=2, we have the two disjoint time series
{X1,X3,... Xn—1} and {X5,X4,... Xy}, €ach of lengthN/2,
and we average the values 8{m,N/2,r,1) for these two
series:

S(m,N,r,2)=3{[C,(m,N/2r,2) —CT(1N/2,r,2)]
+H[Co(mN/2r,2)—CT(IN/2r,2)T). (8)

For general, this becomes

1 t
S(MN.rt)=7 21 [C(m,N/t,r,t)—CT(LN/t,r,1)].

9

Finally, asN—, we can write

AS(m,t)=maxS(m,rj,t)} —min{S(m,r;,t)}, (11)

which is a measure of the variation 8{m,r,t) with r. The
locally optimal timest are then the zero crossings of
S(m,r,t) and the minima ofAS(m,t). In the first case, the
zero crossings should be nearly the same fomahdr, and,

in the second case, the minima should be nearly the same for
all m (otherwise, the time is not locally optimjalThe delay
time 74 will correspond to the first of these locally optimal
times.

In determining the nonlinear dependence of a finite time
series by using the statisti&(m,N,r,t), one must have cri-
teria for selecting the values oh andr. In addition, one
must know the role of the sample sikke For a fixed value of
N, asm becomes large, the data become very sparse, so that
C(m,N,r,t) becomes vanishingly small. Also, if exceeds
the size of the attractor, the®(m,N,r,t) saturates, since all
pairs of points are within the distanceThus, neithem nor
r should be too large.

Brock et al. [12] investigated the BDS statistic for time
series generated from six distributions in order to determine
what values ofm andr are appropriate. Time series with
three sample size®y=100, 500, and 1000, were generated
by Monte Carlo simulation from six distributions: a standard
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FIG. 6. Plateau onset of the correlation dimension for 3000 data

points generated from the Lorenz system usigg 187 (circles

(b)

log1o[C(7)]

and 7,,=123r, (crosses A horizontal line is drawn at the true
correlation dimension ob,=2.05.

We look for the first zero crossing @&(t) or the first local
minimum of AS(t) for finding the first locally optimal time

for independence of the data, and this gives the delay time
T4=1t75. The optimal time is the index lagfor which S(t)

and AS(t) are both closest to zero. If we assign equal im-
portance to these two quantities, then we may simply look
for the minimum of the quantity

5 45 4 @5 8 25 2 a5 4
logio(7)

FIG. 5. Correlation integrals for 3000 data points generate
from the Lorenz system usin@ 74= 187, and(b) 7,,=123r.

normal distribution, a studentdistribution with 3 degrees
of freedom, a double exponential distribution, a chi-square
distribution with 4 degrees of freedom, a uniform distribu-
tion, and a bimodal mixture of normal distributions. These
studies led to the conclusion that should be between 2
and 5, and should be between/2 and 2r. In addition, the
assumed distributions were well approximated by finite time
series whenN=500. Note that examining the statistic
S(m,r,t) only for 2=m=5 does not restrict its use to
systems for which the correlation dimension lies in this
range.

Thus, we select four values af in the rangeo/2<r
<20, r;=(0.5)0, r,=(1.0)0, r3=(1.5)0, and r,
=(2.0)0, as representative values. Rather than examining
S(m,r,t) andAS(m,t) for all of these values af andr, we
instead examine the averages

(9]

_ 1 4
SURETS 21-21 S(myrj,t), (12)

5
2, AS(m.b). (13

NP
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And this optimal time gives the delay time window,
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FIG. 7. Plateau onset of the correlation dimension for 3000 data

points generated from the Rabinovich-Fabrikant system of Hj.
for y=0.87 anda=1.1 using 74=527 (circles and r,,= 1287
(crosses A horizontal line is drawn at the true correlation dimen-
sion of D,=2.19.
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windows obtained by th€ — C method for the three systems
are summarized in Table |. These results are very robust to
the addition of noise, as shown in Rgd.

The correlation integrals for the Lorenz system, using the
fixed value ofry and the fixed value of,, are computed for
N=20 000 data points, and the results are shown in Fig. 3.
From the linear regions of these correlation integfalich
have been darkened in Fig), 3he correlation dimensions are
calculated, and these results are shown in Fig. 4, together
with the valueD,=2.05 obtained by Grassberger and Pro-
caccia[11]. The two sets of results are virtually identical,
and the plateau onset occurs at abmt 16.

Next, we perform a similar analysis for a small data set
with only N=3000 data points. The correlation integrals
based onry and 7, are drawn in Fig. 5, and the correlation
dimensions are shown in Fig. 6. For the fixed valuergf

FIG. 8. Plateau onset of the correlation dimension for 3000 datdhe plateau onset occurs at about=24, but, for the fixed

points generated from the three-torus of Efj7) using 74=55
(circles and 7,,=101 (crosses A horizontal line is drawn at the
true correlation dimension dd,=3.0.

lll. PLATEAU ONSET OF THE CORRELATION
DIMENSION

value of r4, the plateau onset does not occur until about
=28. This difference in embedding dimensions represents a
substantial difference in the amount of computer time re-
quired to obtain the correlation dimension.

We solve the Rabinovich-Fabrikant system of Ef) for
v=0.87 anda=1.1, and we generate a time series of 3000
data points for the variabbe with 7s=0.01. The correlation

In this study, we consider the following three systems: thedimensions based on the valuesrgfand r,, given in Table

Lorenz systenj11]
x=—a(x—-y),
y=—Xz+CX—Y, (15)
zZ=xy—Dbz,
the Rabinovich-Fabrikant systeffi4]

X=y(z— 1+x?)+ yx,

y=x(3z+1-x%)+ vy, (16)
z=—2z(a+Xy),
and the three-torul9]
| 3i | 3v2i | 9v3i
X;j=sin 200 +sin 250 +S|r{m . (17

| are shown in Fig. 7, along with the valiz,=2.19 found
in Ref.[11]. The plateau onset for the correlation dimension
obtained usingr,, occurs at aboutn=10, but the plateau
onset obtained usingy does not occur until abouh=16.
Figure 8 shows similar results for the three-torus of Eq.
(17) using the values of4 andr,, given in Table I. Using the
fixed value ofr,, causes the correlation dimension to saturate
at the correct value db,=3 at aboutm= 24, but, when the
fixed value ofry is used, saturation has still not occurred for
m=30.

IV. CLOSING REMARKS

In this study, we have shown that, for small data sets,
using a fixed delay time window,,, rather than a fixed
delay time 74, leads to a more rapid convergence of the
correlation dimension as the embedding dimensiois in-
creased. Although no standard technique for estimatipg
has yet emerged, we have shown that e C method is

For the Lorenz system, we solve the system of equation¥€ll suited to this task. Furthermore, this method is efficient

the variablex with 7,=0.01. We then comput&(m,r,t)

small data sets. As a result, the use of a fixed value,of

from Eq. (10), and the results are shown in Fig. 1. The rather than a fixed value ofy, should become standard

circles in Fig. 1 indicate the index laigwhere the variation
of S(m,r,t) with r is at its first local minimum, and Fig.(2@
shows this first local minimum ok S(m,t) more clearly. We
choose the delay time at this point, which gives= 187

=0.18 [see Fig. Ph)]. This agrees with the delay time

74=0.17 found by Martinerieet al. [9] using the first local

minimum of the mutual information. Also, from the mini-
mum of S.(t) in Fig. 2(c), we choose the delay time win-

practice. This is particularly important in fields such as hy-
drology and atmospheric science, where small noisy data sets
are common.
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